........

..........

..........

Vtruemark

SOLID Principles -

Single Responsibility
Principle b

Anmol Shah (ASE @
Truemark)

www.truemark.dev

W truemark | SOLID Intfroduction

SOLLD.

Intfroduced by Robert C. Martin in
his paper in early 2000s but the
acronym was infroduced later by
Michael Feathers

Basically a set of principles for
object-oriented design (with focus
on designing the classes)

It is necessary to design classes in
such a way that changes can be
conftrolled and predictable

www.truemarkdev

SOLID design helps to decouple code and make modification easier

Testable and easily understandable

Dependency is the key problem in sofftware development at all
scales

Eliminating duplication in programs eliminates dependency

Incorporating design in the classes helps to create readable code
that many developers can collaboratively work on

www.truemark.dev

Vftruemark | Code Smells

According to wikipedia, code smells
are certain structures in the code
that indicate violation of
fundamental design principles and
negatively impact design quality.

But do note that code smells are not
bugs, compiler errors or
non-functional code.

www.truemarkdev

Vltruemark | Code Smell Example

Date formatting code Helper function V:‘
‘\
.
.
.
.
Class B kL Helper Function
4
4
’ .
Date formatting code Helper function ~ ,+ Date formatting code
"
| 4

Helper function

Date formatting code

www.truemarkdev

@/Ztruemark | Symptoms of a rotting software

{] rGDITY 7 8FRAGILITY

ﬁwscosny IMMOBILITY

changes hard to
apply

simple change
impacts numerous
modules

implementing
simple changes
takes forever

changing one
place harms
another

fixing a bug
causes x others

modules are not
reusable because
of their
dependencies

rewriting a code
instead of
reusing existing
one

easier to do
"hacks" than go
"by the book"

environment is
slow and
inefficient

www.truemarkdev

W truemark | The Single Responsibility Principle

e According to this principle -
_— “There should not be more than
one reason for a class to
g S —— change.
e Can be adjusted and extended
| SNGLE b coss should howe oy quickly without producing bugs
| RESRNSbILITY &Rx"ﬁl *Sponsibilily
Y PRINCIOLE N Fsn Yo chomgr) e Classes narrowly do what they

were infended to do

www.truemarkdev

Vtruemark | Importance

e Avoids modules incompatibility even when team members edit
the same class for different reasons

e Makes version control easier
e Reduces dependencies between classes

e FEasier to scale and maintain

www.truemarkdev

/truemark | Violation of the Principle

class User
def initialize(employee, month)

e Inthe ‘User’ class, the functionality ST
to generate a pay slip of an month = montl
employee based on their salary is
put inside.

end

def generate payslip

e To generate a pay slip all we need
to do is instantiate a user object
and call the "generate_payslip
method.

e Now, there is a new requirement.
We want to send the generated nonth = 11
payslip as an email. user = User.new(employee
user.generate payslip

7/ truemark |

We have added a new method
“send_email” which is generating
the payslip before sending out

the email
How do we refactor the code

such that it also abides by the
single responsibility principle?

s User

def initialize(employee, month)

emi) 2}

end

def generate payslip

end

def send email

#truemark | Good Practice of Coding

class PayslipGenerator
def initialize(employee, month)

€ = EMpLOYyEC

e This approach helps to decouple the end

responsibilities and ensures a predictable def generate payslip
change.

e Each class has its own responsibility now
since the class PayslipGenerator is just

handling the generation of a pay slip
ass anslipMailer

e Meanwhile, the class PayslipMailer is used initialize(employee)

to send those generated payslips as emails ! prtAaie i A

e It also helps to predict any changes in
functionality.

jlef send mail

employee.email

PayslipGenerator {

uctor(employee, month

or (employee, month) { is.emf e = employee;
' = employee; th = month;
= month;

PayslipMailer {
employee)
ce = employee;

n month;

st month =

st month = 11;

“(employee, month);

JOF

Wtruemark | Ways to implement single responsibility principle in Ruby

e Moving the business logic from conftrollers to Service
objects

e GCrouping the methods and constants inside Modules
e Exiract the modellogic info Concerns
e Creating utility classes for maximum code reusability

www.truemarkdev

W truemark | Conclusion

[

N~

e Provides a principled way to manage
dependency

e Results in code that are flexible, robust, and
reusable

e A well-designed codebase is adaptable,
simple to modify, and pleasurable to work
with

www.truemarkdev

THANK YOU

Pabitranagar, Gongabu +977 980-3572935
0 Kathmandu, Nepal 44600 @ +977 984-9247553 i) nello@truemorkdev

Technologies: Spree | Reacjs | Gatsby Js | Ruby on Rails

@ @ @ www.truemarkdev

