
SOLID Principles – 
Single Responsibility 
Principle

Anmol Shah (ASE @ 
Truemark)



SOLID Introduction

● Introduced by Robert C. Martin in 
his paper in early 2000s but the 
acronym was introduced later by 
Michael Feathers

● Basically a set of principles for 
object-oriented design (with focus 
on designing the classes)

● It is necessary to design classes in 
such a way that changes can be 
controlled and predictable



● SOLID design helps to decouple code and make modification easier

● Testable and easily understandable

● Dependency is the key problem in software development at all 
scales

● Eliminating duplication in programs eliminates dependency

● Incorporating design in the classes helps to create readable code 
that many developers can collaboratively work on

Importance



Code Smells

● According to wikipedia, code smells 
are certain structures in the code 
that indicate violation of 
fundamental design principles and 
negatively impact design quality. 

● But do note that code smells are not 
bugs, compiler errors or 
non-functional code.



Code Smell Example



Symptoms of a rotting software



The Single Responsibility Principle

● According to this principle –
 “There should not be more than 
one reason for a class to 
change.”

● Can be adjusted and extended 
quickly without producing bugs

● Classes narrowly do what they 
were intended to do



Importance

● Avoids modules incompatibility even when team members edit 
the same class for different reasons

● Makes version control easier

● Reduces dependencies between classes

● Easier to scale and maintain



Violation of the Principle

● In the ‘User’ class, the functionality 
to generate a pay slip of an 
employee based on their salary is 
put inside.

● To generate a pay slip all we need 
to do is instantiate a user object 
and call the `generate_payslip` 
method.

● Now, there is a new requirement. 
We want to send the generated 
payslip as an email.



● We have added a new method 
`send_email` which is generating 
the payslip before sending out 
the email

● How do we refactor the code 
such that it also abides by the 
single responsibility principle?



Good Practice of Coding

● This approach helps to decouple the 
responsibilities and ensures a predictable 
change. 

● Each class has its own responsibility now 
since the class PayslipGenerator is just 
handling the generation of a pay slip

● Meanwhile, the class PayslipMailer is used 
to send those generated payslips as emails

● It also helps to predict any changes in 
functionality.



Refactored example with JavaScript



Ways to implement single responsibility principle in Ruby

● Moving the business logic from controllers to Service 
objects

● Grouping the methods and constants inside Modules
● Extract the model logic into Concerns
● Creating utility classes for maximum code reusability



Conclusion

● Provides a principled way to manage 
dependency

● Results in code that are flexible, robust, and 
reusable

● A well-designed codebase is adaptable, 
simple to modify, and pleasurable to work 
with



THANK YOU
Pabitranagar, Gongabu


